Nitrosamines and Hydrazones of Dinitroformaldehyde from N_iN -Disubstituted Hydrazines, a Dialkyl Nitroxide, and Tetranitromethane

Ashwin M. KRISHNAN, Lionel T. WOLFORD, and Joseph H. BOYER *

Department of Chemistry, University of New Orleans,

New Orleans, Louisiana 70148, U.S.A.

N,N-Disubstituted hydrazines reacted with a mixture of a dialkylnitroxide and tetranitromethane to give nitrosamines and small amounts of hydrazones of dinitroformal-dehyde.

Selected examples of N_iN —disubstituted hydrazines $\underline{1}$ were converted to nitrosamines $\underline{2}$ on treatment with a mixture of di—i—butylnitroxide (DBN) and tetranitromethane (TNM) in an inert solvent at 25 °C and a similar conversion of N—methyl—N—phenylhydrazine $\underline{1a}$ was brought about by replacing DBN with other nitroxides. This discovery constitutes the first example for the oxidation of a hydrazine to the corresponding nitrosamine and offers an innovative preparative route to nitrosamines heretofore obtained from secondary and tertiary amines by treatment with a nitrosating reagent. In the absence of DBN, the hydrazines $\underline{1}$ reacted with TNM to give the hydrazones $\underline{3}$. Under similar conditions DBN in the absence of TNM did not convert either hydrazines $\underline{1}$ or hydrazones $\underline{3}$ to nitrosamines $\underline{2}$. A thermal conversion of the hydrazones $\underline{3}$ to the nitrosamines $\underline{2}$ at 25 °C did not occur; in an inert solvent (2—(2—n—butoxyethoxy)ethanol) heating at 150-180 °C was required to convert the hydrazone $\underline{3a}$ to an intractable mixture that contained the nitrosamine $\underline{2a}$ in trace amounts detected by TLC. A photochemical conversion of the hydrazone $\underline{3a}$ to the nitrosamine $\underline{2a}$ was previously reported. (1)

On addition of TNM to an equimolar portion of DBN in pentane persistent absorption characteristic of a charge transfer complex $\underline{4}$ appeared in the region 340-370 nm, where TNM and DBN were individually transparent. The data was consistent with a proposed pathway in which a diazenium intermediate $\underline{5} \rightleftharpoons \underline{6}$ was produced from a hydrazine $\underline{1}$ in hydride abstraction by the nitrosonium cation and underwent oxidative fragmentation to a nitrosamine $\underline{2}$. Neither identification of other products nor differentiation of the proposed fragmentation $\underline{5}(\underline{6}) \rightarrow \underline{2}$, from stepwise dissociation of the tetranitromethane radical anion can be offered at this time. Other oxidative dehydrogenations by nitrosonium salts were known.

$$XYNNH_2 + (CH_3)_3C)_2N - O + C(NO_2)_4 \xrightarrow{\text{ether}} XYNNO + XYNN = C(NO_2)_2$$

 $1 \quad DBN \quad TNM \qquad 25 \ ^{\circ}C \qquad 2 \qquad 3$
(a) $X = C_6H_5$, $Y = CH_3$; (b) $X = Y = C_6H_5$; (c) $XY = (CH_2)_5$

DBN + TNM
$$\longrightarrow$$
 $((CH_3)_3C)_2\overset{+}{N=0}$ $[C(NO_2)_4]^{\overset{-}{}}$

$$\stackrel{\underline{4}}{1} \longrightarrow XY\overset{+}{N=NH} [C(NO_2)_4]^{\overset{-}{}} \Longrightarrow XYNNHON(O)C(NO_2)_3 \longrightarrow \underline{2}$$

A solution of *N*-methyl-*N*-phenylhydrazine $\underline{1a}$ (0.5 g, 4 mmol) in ether (2.0 mL) was added dropwise at 0 °C to a deeply colored solution of a mixture of DBN (0.3 g, 2.0 mmol) and TNM (0.4 g, 2.0 mmol) in ether (10 mL). The reaction mixture was brought to 25 °C and stirred (3 h). Removal of ether left a gummy residue that yielded methylphenylnitrosamine $\underline{2a}$ (0.2 g, 75%) and the methylphenylhydrazone $\underline{3a}$ (0.05 g, 10%) of dinitroformaldehyde on separation by preparative TLC [Analtech, Inc. precoated silica gel plates, 1000 microns thick; methylene chloride and hexane (60/40)]. The products $\underline{2a}$ and $\underline{3a}$ were identified by observing GC, mp, and IR data to be identical with authentic information.¹⁾ The product pairs: (1) *N*-nitrosodiphenylamine $\underline{2b}$ (65%) and the diphenylhydrazone $\underline{3b}$ (detected by TLC) and (2) *N*-nitrosopiperidine $\underline{2c}$ (67%) and the hydrazone $\underline{3c}$ (10%) were similarly obtained from *N*,*N*-diphenylhydrazine $\underline{1b}$ and *N*-aminopiperidine $\underline{1c}$. *N*-Aminomorpholine $\underline{1d}$, XY = (CH₂)₂O(CH₂)₂, and *N*-amino-*N*'- methylpiperazine $\underline{1e}$, XY = (CH₂)₂N(CH₃)-(CH₂)₂, gave intractable mixtures on similar treatment with DNB and TNM.

Financial assistance was received from ONR.

References

- 1) J. H. Boyer and A. M. Krishnan, J. Chem. Soc., Chem. Commun., 1988, 715.
- 2) N. Kornblum, Aldrichchimica Acta, 23, 71 (1990). The dissociation of nitro radical anions in the presence of nucleophiles to nitrite anions and alkyl radicals was reviewed.
- 3) D. H. Hunter, J. S. Racok, A. W. Rey, and Y. Z. Ponce, J. Org. Chem., 53, 1278 (1988).

(Received December 12, 1990)